99精品国产免费久久久久久下载,国产精品久久久久久超碰,一区二区的视频,欧美久久综合九色综合,国模一区二区,自拍欧美日韩,伊人福利视频导航

搜索
當前所在位置: 主頁 > 秀教案 >

高中數(shù)學教案模板(薦)

發(fā)布時間:2025-07-19 21:24 作者:admin 點擊: 【 字體:

高中數(shù)學教案模板(薦)

作為一名專為他人授業(yè)解惑的人民教師,通常會被要求編寫教案,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的高中數(shù)學教案模板,歡迎大家分享。

高中數(shù)學教案模板1

一、教學目標

(一)知識與技能

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

(三)情感態(tài)度價值觀

1、感受動點軌跡的動態(tài)美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

二、教學重點與難點

教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

教學難點:圖形、文字、符號三種語言之間的過渡

三、、教學方法和手段

【教學方法】觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結(jié)合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

【教學手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

【教學模式】重點中學實施素質(zhì)教育的課堂模式"創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展"。

四、教學過程

1、創(chuàng)設(shè)情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設(shè)計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

2、激發(fā)情感,引導探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

練習1,2,3;

高中數(shù)學教案模板6

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;

(5)通過對排列應(yīng)用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學生嚴謹?shù)膶W習態(tài)度。

教學建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點是導出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當中。

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù)。

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。

排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學生解決應(yīng)用問題的能力。

在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應(yīng)盡量采用。

在教學排列應(yīng)用題時,開始應(yīng)要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學生的分析問題的'能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號表示排列數(shù)。

②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區(qū)別。

在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。

要特別注意,不加特殊說明,本章不研究重復排列問題。

③關(guān)于排列數(shù)公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導,,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。

導出公式后要分析這個公式的構(gòu)成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本的一段話:“其中,公式右邊例2就是用這個公式證明的問題;

(2)為使這個公式在時也能成立,規(guī)定,如同時一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。

⑤學生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。

高中數(shù)學教案模板7

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數(shù)并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。

難點是解有關(guān)排列的應(yīng)用題。

教學過程設(shè)計

一、復習引入

上節(jié)課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1、書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書。

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2、某農(nóng)場為了考察三個外地優(yōu)良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區(qū)?

找一同學談解答并說明怎樣思考的的過程

、,第×行。一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。

下面由教師提問,學生回答下列問題

(1)按著這個定義,結(jié)合上面的問題,請同學們談?wù)勈裁词窍嗤呐帕校渴裁词遣煌呐帕校?/p>

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同。兩個條件中,只要有一個條件不符合,就是不同的排列。

如第一個問題中,北京—廣州,上?!獜V州是兩個排列,第三個問題中,213與423也是兩個排列。

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列。

(2)還需要搞清楚一個問題,“一個排列”是不是一個數(shù)?

生:“一個排列”不應(yīng)當是一個數(shù),而應(yīng)當指一件具體的事。如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列。如果問飛機票有多少種?能表示出多少種信號。只問種數(shù),不用把所有情況羅列出來,才是一個數(shù)。前面提到的第三個問題,實質(zhì)上也是這樣的

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數(shù)碼1,2,3,4。有四個空箱,分別寫著號碼1,2,3,4。把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題。

解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個放在第1空箱。

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱。

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱。

第四步把最后符合條件的一張放在第四空箱。具體排法,用下面圖表表示:

所以,共有9種放法。

四、作業(yè)

課本:P232練習1,2,3,4,5,6,7。

高中數(shù)學教案模板8

教學目標

(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學生掌握組合數(shù)的計算公式;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

教學重點難點

重點是組合的定義、組合數(shù)及組合數(shù)的公式;

難點是解組合的應(yīng)用題.

教學過程設(shè)計

(-)導入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計意圖:組合與排列所研究的'問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動)指導學生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區(qū)別?

(學生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到

[字幕]公式1:

公式2:

(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導訓練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學生活動)思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學生的綜合分析能力.

【反饋練習 學會應(yīng)用】

(教師活動)給出練習,學生解答,教師點評.

[課堂練習]課本P99練習第2,5,6題.

[補充練習]

[字幕]1.計算:

2.已知 ,求 .

(學生活動)板演、解答.

設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

(三)小結(jié)

(師生活動)共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計算的兩個公式.

(四)布置作業(yè)

1.課本作業(yè):習題10 3第1(1)、(4),3題.

2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.

【高中數(shù)學教案】相關(guān)文章:

高中必修數(shù)學教案01-07

高中數(shù)學教案09-28

高中必修4數(shù)學教案03-13

高中數(shù)學教案10-26

高中數(shù)學教案【熱門】11-12

【推薦】高中數(shù)學教案11-10

【熱】高中數(shù)學教案11-11

【薦】高中數(shù)學教案11-14

【熱門】高中數(shù)學教案11-21

【精】高中數(shù)學教案11-13

閱讀全文
返回頂部